We’d like to visit Roger Apery and his constant once more. Dragan Jankovic, our speaker in Math Club a few weeks ago, sent us an email pointing out that the controversy surrounding Apery’s announcement of his proof that that is irrational, which we discussed here, has another side to the story. It’s interesting to see the human side of mathematics, so we thought we should be fair to Apery and tell you the other side of things.

François Apery, Roger Apery’s son, wrote a brief biography which explains the context of the situation. You can read the essay here. The short version is that Apery was a strong individualist in life and mathematics. He annoyed more than a few people and that probably made them less friendly to Apery and his mathematical results (mathematicians are humans after all!). Note: Bourbaki is a famous and very influential group of French mathematicians. Normally it is a prestigious honor to be invited to be a member. We’ll post more about this very interesting group sometime soon.

As François Apery writes:

[Apery’s] vision of mathematics was individualistic like his political philosophy, rebellious to all orthodoxy…. Practicing what he preached, he declined Dieudonné’s invitation to join Bourbaki.

The dominance of Bourbaki meant marginalization for the anti-Bourbakiste. Not being in sympathy even with all the other marginalized, Apéry eventually found himself nearly isolated.

[Apery] attacked the Lichnérowicz teaching reforms…. The reforms passed; he worried that 20 years later there would be a backslash in public opinion against mathematics, a prophecy that unfortunately came true. The instigators of the Lichnérowicz reform insisted on loyalty to their program and tried to brand any opposition to it as reactionary, which only hardened Apéry’s position and deepened his isolation in the community. It went so far that at the

Journées Arithmétiques de Marseillein 1978, his lecture on the irrationality of was greeted with doubt, disbelief, and then disorder.

— François Apéry (1996)

On the other hand, Roger Apery probably didn’t help things if the version of events described in this blog post by Dick Lipton is true:

I heard that when Apéry wrote on the board the key identity he needed,

he gave a very strange answer to “where did this identity come from?” He is alleged to have answered, “

they grow in my garden.” Obviously, this did not help make people feel comfortable. The identity is wonderful, the proof is correct— Dick Lipton

P.S. Francois Apery is a notable mathematician in his own right. For example, he gave explicit equations using only polynomials for Boy’s Surface (many people were surprised that it could be done). Here is an interesting article by Bruter about Boy’s Surface in art and architecture.

It has been known for a long time that is a rational of , and hence irrational, if is an even integer (…). In contrast, the irrationality of was proved by Roger Apéry only in 1979. Despite considerable effort the picture is rather incomplete about for the other odd integers, . Very recently, Keith Ball and Tanguy Rivoal proved that infinitely many of the values are irrational. (…) Wadim Zudilin has proved that at least one of the four values and is irrationational.

Martin Aigner and Günter Ziegler

Proofs from THE BOOK,“It has (…) is irrational”

Américo,

Many thanks for your interesting post!

U. of Oklahoma Math Club,

Not at all!

PS. There is a similar series for